If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X+X^2=96
We move all terms to the left:
X+X^2-(96)=0
a = 1; b = 1; c = -96;
Δ = b2-4ac
Δ = 12-4·1·(-96)
Δ = 385
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{385}}{2*1}=\frac{-1-\sqrt{385}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{385}}{2*1}=\frac{-1+\sqrt{385}}{2} $
| 7x+x=15 | | 2000/x-2000/x+100=10 | | 6(3e-9)=36 | | 5x^2+12x=100 | | 3(x-1)-8=10-3(x-4) | | 4/7x+3=23 | | 6x/5=-16/3 | | -x/2=-4/3 | | 9x/4=-36 | | 3x+4=107 | | 7(2x-1)-3(4x-1)=4(3x+2)-2 | | -x/13=7 | | 3x24=9x | | 6x^2-x-560=0 | | X^2+32x-360=0 | | X=1.125+2.25y | | 4+3(2n-1)=43 | | -0.08x+1.1=3.2x-5.14 | | (4a+1)=21 | | 6.8-2x=10.2 | | x+1/4=15/12 | | 4(2x-1)=3x-5 | | 3(n+2)=2(5n-4) | | 4(k-1)=2(k-5) | | -4(2p=5)=20 | | 2j=8+4 | | g=5+2 | | r3=5 | | 6-6k=1 | | 6-6k=10 | | 6-6k=32 | | 3m-5/(m-3)+1/2(4m-6)=2m-3 |